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Laboratory observations and numerical experiments have shown that a variety of
compound vortices can emerge in two-dimensional flow due to the instability of
isolated circular vortices. The simple geometrical features of these compound vortices
suggest that their description may take a simple form if an appropriately chosen set
of functions is used. We employ a set which is complete on the infinite plane for
vorticity distributions with finite total enstrophy. Through projection of the vorticity
equation (Galerkin method) and subsequent truncation we derive a dynamical system
which is used to model the observed behaviour in as simple as possible a fashion. It is
found that at relatively low-order truncations the observed behaviour is qualitatively
captured by the dynamical system. We determine what the necessary ingredients are
for saturation of instabilities at finite amplitude in terms of wave–wave interactions
and feedback between various azimuthal components of the vorticity field.

1. Introduction
In two-dimensional or quasi-geostrophic fluid dynamics several types of coherent

flow structures have been discovered in recent years. The most common is the simple
monopolar vortex, often circularly symmetric in the absence of external strain. Such
vortices emerge in two-dimensional turbulence from an initial state of randomly dis-
tributed vorticity due to the spectral flux of kinetic energy to larger scales (McWilliams
1984; Sadourny 1985; Benzi, Patarnello & Santangelo 1988). Chance encounters of
such vortices with oppositely-signed circulations can lead to the formation of a dipole
which is a self-propelling compound vortex. In forced two-dimensional turbulence,
Legras, Santangelo & Benzi (1988) observed a coherent compound vortex of an even
more complicated nature, the so-called tripole. Laboratory experiments (van Heijst &
Kloosterziel 1989) and numerical simulations (Carton, Flierl & Polvani 1989) showed
tripole formation due to the growth of an azimuthal wavenumber-2 instability of an
unstable isolated circular vortex. Laboratory experiments revealed that wavenumber-
3 instabilities can lead to an even more complicated compound vortex, called the
triangular vortex (see Kloosterziel & van Heijst 1991). Carnevale & Kloosterziel
(1994) and Morel & Carton (1994) investigated whether compound vortices could
result from instabilities associated with even higher azimuthal wavenumbers. This was
found unlikely because these vortices are unstable to infinitesimally small perturba-
tions. The tripole and triangular vortex have simple symmetric vorticity distributions.
This suggests that these vorticity patterns can be closely approximated by sums of a
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small number of appropriately chosen functions and that the dynamics describing the
evolution may possibly be modelled in a simple fashion. These issues are addressed
in this paper. Three instabilities are analysed. In each case a circular vortex is initially
slightly perturbed. Which instability ensues depends on the particular initial axisym-
metric vorticity distribution and on of what kind the initial perturbation is. First we
consider tripole and triangular vortex formation and then a third instability which
leads to what we call a square vortex. Like the tripole and the triangular vortex, it
is a rotating compound vortex. But it is unstable and breaks up into two dipoles.
In § 2.1 we present graphs from numerical simulations showing these instabilities. In
§ 2.2 the vorticity fields ω are decomposed into an axisymmetric component ω0 and
azimuthal deviations ωk>0, i.e. ω =

∑
k ωk with k = 0, 1, 2, . . . . A different fundamen-

tal azimuthal wavenumber k = m is associated with each of the compound vortices.
The most unstable normal modes for the circular flows that give rise to them are
obtained by filtering the ωm-component from the numerical data at early stages in
the evolution. We determine the temporal evolution of the components and show
that there is a strict hierarchy in their amplitudes and that only a small number of
azimuthal components ωk dominate during the evolution.

In § 3 we derive through projection of the vorticity equation (Galerkin method)
and truncation a finite-dimensional dynamical system. Numerous studies in all areas
of physics have employed this method. The best known example of a dynamical
system thus derived is the celebrated Lorenz (1963) model. It has not been used
before to gain a better understanding of the evolution of two-dimensional vortices, in
particular the seemingly complex metamorphosis from circular to compound. It differs
also from previous studies in that we apply it to the evolution on an infinite domain.
Usually box-like or compact domains like a sphere are considered and expansions in
eigenfunctions of the Laplace operator are used. On such domains the eigenvalues
(e.g. wavenumbers) of the Laplacian are discrete, and a spectral truncation usually
involves eliminating all modes of length scale smaller than some prescribed value. On
the infinite plane, however, the spectrum is continuous. Sums over the eigenfunctions
are replaced by integrals and truncation of the integrals at a given length scale
still leaves an infinite number of modes to deal with, that is, no finite-dimensional
system can be derived by truncation. We can resolve this dilemma by abandoning
the requirement that the functions in which the fields are expanded be eigenfunctions
of the Laplacian operator. Any complete orthogonal set of functions that span the
plane could be used. We use functions which are not eigenfunctions of the Laplace
operator. A low-order model can be obtained by truncation because they form a
discrete set. Vortices with finite total enstrophy can be represented by an expansion
ω =

∑
n

∑
k b

k
n(t)ϕ

k
n(r, θ) with the ϕkn essentially of the form ϕkn(r, θ) = fn(r)e

ikθ .
Cylindrical polar coordinates (r, θ) are used with the origin (r = 0) at the centre of
the initially axisymmetric vortex. The radial part fn is a Laguerre function which
consists of a polynomial in r times an exponentially decaying part. The order of
the polynomial is higher as n increases. The projection leads to a system of coupled
ordinary differential equations for the expansion coefficients bkn(t). The advection term
of the vorticity equation appears as quadratic terms in the expansion coefficients
bkn multiplied by nonlinear interaction coefficients. A finite-dimensional dynamical
system is obtained by limiting the azimuthal wavenumbers k and radial wavenumbers
n to finite ranges. This system provides a tool to systematically explore the possibility
of simplifying the dynamics of compound vortex formation.

In § 3.1 we determine the linear stability properties of various initial conditions in
the truncated dynamical system and compare this with the relevant results from § 2. It



Instability of two-dimensional isolated circular vortices 219

establishes what are the smallest systems that can model the initial stages of unstable
normal modes growth. We discuss the nonlinear dynamics at low-order truncations
in § 3.2. Emphasis is on tripole formation because triangular vortex and square vortex
formation are entirely analogous. Particular attention is paid to what the necessary
ingredients are for saturation at finite amplitude, in terms of feedback between various
azimuthal components ωk and the generation of higher harmonics. It is found that the
first harmonic ω2m is of fundamental importance in the formation process, but only for
a limited time. Laplacian diffusion is further used to mimic the flow of enstrophy to
smaller scales which are not resolved at low-order truncations. Through an example we
show that this diminishes shape vacillations of the pattern not unlike those observed in
the laboratory and high-resolution experiments. Asymptotically the system converges
to a stable periodic solution. Finally, in § 3.3 we discuss theory and techniques for find-
ing time-periodic solutions in the dynamical system which correspond to steadily rotat-
ing compound vortices. We show that typically the structure of the fundamental com-
ponent ωm for a fully-formed compound vortex is close to that of one of the neutrally
stable modes for its axisymmetric component ω0. In § 4 the main results and conclu-
sions are summarized and some open questions are mentioned. Appendix A outlines
how to calculate the interaction coefficients. In Appendix B it is shown that enstrophy
is conserved by the system in the inviscid limit, irrespective of the chosen truncation.

2. Stability and instability of circular vortices
The stability of steady two-dimensional flows is usually determined with a normal-

modes analysis of the linearized vorticity equation. Introducing a streamfunction ψ,
we have in polar coordinates (r, θ) u = r−1∂θψ, v = −∂rψ, and ω = −∇2ψ, where u
and v are the radial and azimuthal velocity, respectively. For a normal modes analysis
of a circular vortex the streamfunction is written as a sum of the basic steady circular
flow plus a time-dependent perturbation: ψ(r, θ; t) = ψ̄(r) +ψ′(r, θ; t), where t is time.
The origin (r = 0) is put at the centre of the initially circular vortex. Normal modes
are of the form

ψ′(r, θ; t) = eiλtφ(r)eikθ. (1)

The evolution of the real part of (1) is the physically relevant part. Small perturbations
of this form make the originally circular streamlines slightly undulated when k 6= 0.
Substitution in the inviscid two-dimensional vorticity equation and linearization yields
a well-known eigenvalue problem (see Drazin & Reid 1981):(

λ+ k
v̄(r)

r

)(
1

r

d

dr
r
dφ(r)

dr
− k2

r2
φ(r)

)
− k

r

dω̄(r)

dr
φ(r) = 0. (2)

Here v̄(r) is the azimuthal (swirling) velocity of the circularly symmetric vortex
and ω̄(r) the corresponding vorticity. A numerical method to solve this eigenvalue
problem on the infinite domain is described by Gent & McWilliams (1986). When
an eigenvalue λ is real, there is neutral stability with respect to a perturbation of
type (1). When Im(λ) < 0 it will grow exponentially, i.e. we have instability (Im( · )
denotes imaginary part). After some manipulations of (2) Rayleigh’s inflection-point
theorem follows: a necessary condition for having a mode with a corresponding λ
for which Im(λ) 6= 0 is that dω̄/dr changes sign somewhere (Drazin & Reid 1981).
The absence of an inflection point implies neutral stability. Dritschel (1988) and
Carnevale & Shepherd (1990) showed that circular vortices with no inflection point
and vanishing vorticity ω̄(r) for large r are in fact stable with respect to finite-sized
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Figure 1. (a) The family of circular vortices (3) for α = 3, 4, 5, 6, 7, 8 and (b) non-dimensional growth
rates as a function of α for the most unstable normal modes with wavenumbers k = 2 (solid), k = 3
(dashed) and k = 4 (dash-dotted).

perturbations. Such vortices have circulation, i.e. their velocity v̄(r) ∝ 1/r for r → ∞.
We are interested in isolated vortices for which rv̄(r)→ 0 as r →∞. This implies that∫ ∞

0
ω̄(r)rdr = 0. For such vortices dω̄(r)/dr always changes sign somewhere if ω̄ is a

continuous function of r. An inflection point does not imply instability, it only singles
out the possibly unstable candidates. Carton & McWilliams (1989) investigated the
stability of circular vortices with

ω̄α(r) = ( 1
2
αrα − 1)e−r

α

. (3)

For α > 0 they all have an inflection point. Profiles for several α-values are shown in
figure 1(a). Below we will frequently refer to this family of vortices. The corresponding
velocity profiles v̄α(r) = − 1

2
r exp (−rα) (not shown) increase from zero at r = 0 to a

maximum at some r = rmax and then fall off monotonically to zero and more rapidly so
for larger α. The flow is everywhere clockwise. The vorticity is negative near the centre
and positive further out. For small-enough positive α these vortices are linearly stable.
For approximately α > 1.85 they first become unstable to perturbations with k = 2.
Carnevale & Kloosterziel (1994) plotted the growth rates of the most unstable normal
modes as a function of α for wavenumbers k = 2, 3 and 4. An improved version of that
figure is shown here as figure 1(b). We have increased the range of α and increased
the resolution used in the calculation of the growth rates. Figure 1(b) shows that for
large enough α several azimuthal wavenumbers can simultaneously be unstable.

If the initial perturbation is small, excited unstable modes grow initially in a fash-
ion dictated by the linear dynamics. What happens due to nonlinear effects when
amplitudes get large can be answered by solving the vorticity equation numerically.
The method of simulation we used is that of Patterson & Orszag (1971) on a doubly
periodic domain of N ×N grid points. We employed an isotropic spectral truncation
at wavenumber ktrunc = (8/9)1/2N/2, with a resolution N = 256. The factor (8/9)1/2

derives from geometrical considerations for avoiding alias errors simultaneously in-
volving two orthogonal directions on a square lattice. This truncation is optimal for
preserving as many spatial Fourier modes as possible in an isotropically truncated
spectral model. See Patterson & Orszag (1971) for a derivation of this result. Hy-
perviscosity was used to prevent build-up of small-scale enstrophy due to the finite
resolution while keeping the energy decay at negligible levels. That is, a dissipative
term of the form ν4(∇2)2ω was added to the vorticity equation. ∇2 is the Laplace
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operator here. The coefficient used was ν4 = 4Q1/2/k4
trunc, where Q is the enstrophy.

In our experience this hyperviscosity adequately diffuses the small scales produced in
these simulations without affecting the scales of interest. The coefficient was adjusted
in time as the enstrophy decayed. Time was scaled by |ω̄(0)|−1 in the simulations
discussed below. Two types of initial vorticity perturbations have been used by us
and others to excite instabilities:

ω′ = η exp

[−(αrα − 2)2

2σ2

]
− c, ω′ = µ cos (kθ) exp

[−(αrα − 2)2

2σ2

]
. (4a,b)

In (4a) η(x, y) is a random number uniformly generated in the range (−η0, η0) for
each grid point, and c is a constant chosen to ensure that the spatially integrated
value of ω′ vanishes. This perturbation is concentrated at the radius where ω̄(r) of
type (3) changes sign, and σ can be adjusted to make the perturbation penetrate the
core of negative vorticity and the surrounding annulus of positive vorticity to any
degree. In (4b) µ is a constant and k an azimuthal wavenumber.

2.1. Examples

According to figure 1(b) a vortex with α = 3 is unstable to wavenumber-2 per-
turbations. When this vortex is randomly perturbed (perturbation of type (4a)), a
wavenumber-2 instability emerges (Orlandi & van Heijst 1992). In figure 2 we show
snapshots from one of our numerical simulations. The initial condition at t = 0 shown
in panel (a) is the α = 3 vortex with a small perturbation of type (4b) with k = 2 added
to it. In figure 2(b) the elongated shape of the negative core vorticity indicates that at
t = 25 a k = 2 mode has attained an appreciable amplitude. Two semicircular regions
of positive vorticity have formed (‘satellites’) at t = 50 around which tendrils of core
vorticity have been wrapped (figure 2c). Thin core vorticity filaments are observed
at t = 75 (figure 2d) as the wrapping and stretching continues. The core is almost
circular but returns to an elliptical shape as time increases to t = 100 (figure 2e). At
this time a saturation into a ‘tripole’ is observed which persists afterwards. Tripole
formation in a rotating homogeneous fluid is discussed by van Heijst, Kloosterziel &
Williams (1991) and in a stratified fluid by Flor & van Heijst (1996). Tripoles have
also been observed in the ocean (Pingree & Le Cann 1992). For a detailed numerical
study see Carton & Legras (1994). The tripole of figure 2(e) rotates clockwise about
its centre. Between t = 100 and t = 200 (figures 2e and 2f, respectively) it has made
slightly more than one full turn. The rotation persists and the flow is quasi-stationary
in a co-rotating frame, i.e. only some small erratic changes occur in the vorticity
distribution. The simulation was continued until t = 600 and the tripole made an
additional six full turns. Energy is conserved to the fourth significant digit whereas
enstrophy decays roughly 5% between t = 0 and t = 200 and an additional 5%
between t = 200 and t = 600.

For α > 3 in (3), the vortex is unstable to perturbations with various azimuthal
wavenumbers (see figure 1b). A random perturbation can therefore initiate the simul-
taneous growth of two or more modes with different azimuthal wavenumbers. For
small enough perturbation amplitudes there is still a range of α-values > 3 where
tripole formation occurs although k = 3 also grows. For example for α = 4 there is
a substantial difference between the growth rates of the most unstable modes with
k = 2, 3. If a perturbation projects roughly equally on both modes and amplitudes
need to grow 100-fold before nonlinear effects take hold, then the k = 3 amplitude
will at that point be an order of magnitude smaller than the k = 2 amplitude. Tripole
formation then proceeds in spite of the presence of the k = 3 component. Compound
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Figure 2. Shaded contour plots of vorticity in a numerical simulation of the evolution of ω̄α=3

initially perturbed with a perturbation of type (4b) with k = 2, µ = 0.1, σ = 0.25. Non-dimensional
times are (a) t = 0, (b) t = 25, (c) t = 50, (d) t = 75, (e) t = 100 and (f) t = 200. The
(non-dimensional) computational box size is 10 × 10. The resolution is 2562. Uniform grey away
from the central region indicates zero vorticity, black and darker grey indicate negative vorticity,
white and lighter grey indicate positive vorticity.

vortices different from the tripole can form for α > 3 when the initial perturbation
is sufficiently dominated by an azimuthal wavenumber k 6= 2. Figure 3 shows the
evolution of the α = 7 vortex seeded with a small k = 3 perturbation of type (4b).
The initial condition is in figure 3(a). In figure 3(b) the growth of a wavenumber-3
instability is visible. In figure 3(c) the core has become triangular while three satellites
have formed around which thin filaments of core vorticity are wrapped, similar to that
shown in figure 2(d) for the tripole. In figure 3(d) the final state is shown. The triangu-
lar vortex rotates about its centre without significant changes in shape. Carnevale &
Kloosterziel (1994) and Beckers & van Heijst (1998) presented photographs showing
triangular vortex formation in a rotating fluid. In figure 4 snapshots are shown of
the evolution of the α = 7 vortex seeded with a k = 4 perturbation of type (4b).
Figure 4(a) shows the still roughly circular vorticity distribution at t = 10. At t = 45
(figure 4b) the core has become square in shape and four satellites have formed.
The square vortex rotates but it is unstable. The onset of the instability is seen in
figure 4(c) when the satellites move towards each other in pairs, and start to merge
(figure 4d). The core becomes elongated (figure 4e) and breaks up into two pieces
(figure 4f). Two dipoles form which propagate away in opposite directions. For labo-
ratory experiments showing such dipole splitting events see Kloosterziel & van Heijst
(1991) and Carnevale & Kloosterziel (1994). No square vortex formation has ever
been observed in the laboratory (See Note Added in Proof, p. 256).

2.2. Decomposition in azimuthal components

Vorticity fields like those shown in figures 2, 3 and 4 can be expressed as ω =
∑∞

k=0 ωk
where

ωk = fk(r; t) Re (eikθ+iφk(r;t)) (5)
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Figure 3. Shaded contour plots of vorticity in a numerical simulation of the evolution of ω̄α=7

initially perturbed with a perturbation of type (4b) with k = 3, µ = 0.1, σ = 0.5. Times are (a) t = 0,
(b) t = 20, (c) t = 40 and (d) t = 200. Box sizes, resolution and shading are as in figure 2.

(Re( · ) denotes real part) and φk = 0 for k = 0. The fk(r; t) and the phase factors can
numerically be determined using Ck = fk cosφk, Sk = −fk sinφk with

{Ck(r; t), Sk(r; t)} =
1

π

∫ 2π

0

ω(r, θ; t) {cos kθ, sin kθ}dθ. (6)

This gives a decomposition of the vorticity distribution in azimuthal components ωk .
A measure for the amplitude of ωk at a given time is

Ak(t) = Q
1/2
k =

(∫ 2π

0

∫ ∞
0

ω2
k (r, θ; t)rdrdθ

)1/2

, (7)

where Qk is the enstrophy associated with wavenumber k. The integral converges
rapidly because the vorticity amplitudes drop quickly off to zero for large r, and the
actual integral is taken over the finite-sized computational domain. The origin (r = 0)
is at the centre of the vortex.

In figure 5(a) we show the evolution of Ak(t) for various even wavenumbers k in
the experiment of figure 2. A similar graph was shown by Carton & Legras (1994).
Amplitudes with odd k remained negligibly small. Amplitudes for k > 8 are at all
times smaller than A8(t). At t = 0 A0 is O(1), A2 is initially O(10−1). Numerical
inaccuracies due to the rather crude integration algorithm used to evaluate (6) lead
to non-zero but very small amplitudes for all other wavenumbers at t = 0. On the
logarithmic scale of figure 5(a) there is after a brief transient initially a linear increase
for k = 2. This is the period of exponential growth of unstable k = 2 normal modes
as in the linearized dynamics. The higher harmonics also grow, which is a nonlinear
effect. Around t = 50 the k = 2, 4, 6, 8 amplitudes peak. Small oscillations appear in
all Ak which persist up to t = 300 and beyond (not shown). The relative maximum
in A2 at t = 50 is when in figure 2(c) the core has become highly elongated. The
following relative minimum at t = 75 is when in figure 2(d) the core is momentarily far
less elongated. The levels about which the amplitudes oscillate afterwards correspond
roughly to the vorticity distribution shown in figure 2(f).

In figure 5(b) Ak(t) are shown for the experiment of figure 3, with k = 0, 3, 6, 9, 12
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Figure 4. Shaded contour plots of vorticity in a numerical simulation of the evolution of ω̄α=7

initially perturbed with a perturbation of type (4b) with k = 4, µ = 0.05, σ = 0.5. Times are (a)
t = 10, (b) t = 45, (c) t = 152, (d) t = 157, (e) t = 163 and (f) t = 172. Box sizes, resolution and
shading are as in figure 2.

and A2(t). The evolution is similar to that shown in figure 5(a), except that when the
final triangular vortex has formed (see figure 3d) the amplitude of A3 is almost as
large as A0 (A0/A3 ≈ 11/10) whereas for the tripole A0/A2 ≈ 7/4 after t = 200. The
α = 7 vortex used here is unstable to k = 2 perturbations, and unstable modes with
k = 2 get excited by the invariably present numerical noise. As a consequence A2 also
grows. After the triangular vortex has formed, A2 continues to grow in an oscillatory
fashion but it levels off near the value shown at t = 300. Also A4 (not shown) grew
to levels similar to those of A2. We ran a high-resolution simulation (2562) where we
started with the circular component ω0 at t = 300, (shown below in figure 8b), and
perturbed with the k = 2 component at t = 300. A rapid growth of a k = 2 instability
ensued, leading to a breakup into dipoles. Thus, the stability of the triangular vortex
is determined by the entire vorticity field, not by the underlying circular component.
Carnevale & Kloosterziel (1994) found in fact that the triangular vortex is stable with
respect to arbitrary but small perturbations.

Next, in figure 5(c), the Ak(t) are shown for the experiment of figure 4 for k =
0, 4, 8, 12 and also A2(t). After the square vortex has formed A2 continues to grow and
around t = 150 it equals A4 in amplitude. At this time the core is no longer square
(figure 4c). The k = 2 component continues to grow, and rapid changes in A0, A4 and
the other amplitudes ensue. These changes are associated with the events shown in
panels (d–f) of figure 4, i.e. the continued stretching of the core, the merger of the
satellites, and the subsequent dipole splitting. Thus, the square vortex is short-lived
due to a k = 2 instability. In other simulations we subtracted the ω2-component
at t = 125. The amplitude A2 could be brought down to machine precision level
O(10−15). The resulting square vortex rotated for a while, but noise generated in the
numerical scheme due to the finite resolution and round-off errors again led to the
growth of a k = 2 component, and dipole splitting occurred again. The square vortex
is thus unstable to the smallest perturbations.
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Figure 5. Evolution of amplitudes of various azimuthal components ωk for (a) the tripole of
figure 2, (b) the triangular vortex of figure 3 and (c) the square vortex of figure 4. For a definition
of Ak see text. Black dots indicate the times at which vorticity distributions were shown in figures 2,
3 and 4.

In what follows m will indicate the azimuthal wavenumber associated with each
instability. This facilitates the discussion and generalization of the results. The most
unstable normal modes for each case are shown in figure 6. These are the ωm-
components for the tripole (m = 2), triangular vortex (m = 3) and the square vortex
(m = 4) at early times when the evolution is still dominated by linear dynamics.
Figure 6(a) showing ω2 for the tripole compares well with the figure shown by Carton
& Legras (1994) who determined the fastest growing normal mode for the α = 3
vortex through normal modes analysis. In each example there are 2m cells of vorticity
of alternate sign surrounded by another 2m cells whose centres are rotated with
respect to the centres of the inner cells. The radius dividing the inner and outer cells
is in each case near the position of the inflection point of ω̄α(r), while the maxima of
the inner cells are near the zero crossing of ω̄α(r).

In the first row of figure 7 vorticity contours are shown for the three compound
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(a) (b) (c)

Figure 6. Contours of the most unstable modes leading to (a) tripole formation in fig-
ure 2, (b) triangular vortex formation in figure 3 and (c) square vortex formation in figure 4.
These are the components ω2, ω3 and ω4, respectively, numerically determined at (a) t = 20,
(b) t = 10 and (c) t = 10. The ωm were calculated using (6) and a simple linear interpolation
scheme for the azimuthal integral at sufficiently many radial positions. Contour increments are
∆ω = max(|ωm|)/10 in each panel. Thick lines indicate positive values, thin lines negative values.
Box sizes are smaller than figures 2–4 in order to show more details.

vortices. The second row shows contours of the ωm-component and the third row
the ω2m-component (first harmonic). Contour levels are the same in the second and
third rows. For the tripole and the triangular vortex the maximum amplitude of ω2m

is somewhere between 10% and 20% of the maximum amplitude of ωm, while for
the square vortex the maximum amplitude of ω2m is less than 10% of the maximum
of ωm which is why the last panel is empty. Note the difference between the ωm
patterns shown in figure 6 and in the second row of figure 7. Nonlinear effects have
substantially altered them between the time of exponential growth and the time of
saturation. In figure 8 we compare the original vorticity distributions that gave rise
to the compound vortices with the ω0-component of the tripole, triangular vortex
and square vortex. In the case of the tripole and the triangular vortex (figure 8a, b)
the cores of ω̄α=3 and ω̄α=7, respectively, have lost some of their negative vorticity
while the outer annuli of positive vorticity have somewhat broadened and decayed in
amplitude. This is the region where the satellites are located. In the case of the square
vortex (figure 8c) the core vorticity of ω̄α=7 is virtually unaltered.

Because for each case in figure 5, Am > A2m > A3m > · · ·, the question arises as
to how many of the azimuthal components ωk determine the main features of the
vorticity distributions during the evolution. Figure 5(a) shows that at t = 50 the Ak
with k 6= 0 reach a maximum during the tripole formation. The tripole at t = 50 was
shown in figure 2(c). Figure 9(a) shows that ω0 + ω2 is not sufficient. Adding ω4 we
get figure 9(b) which still does not capture the main features seen in figure 2(c). When
we also add ω6 there is a tendency for the core to become elongated and bend at
the tips (figure 9c). It improves a little more if we add ω8 (figure 9d). To resolve the
thin tendrils of core vorticity which wrap around the satellites in figure 2(c), many of
the higher azimuthal components need to be added. Next consider the fully formed
tripole shown in figure 2(f). In figure 9(e) we show the approximation ω ≈ ω0 +ω2, in
figure 9(f) ω ≈ ω0 +ω2 +ω4. In the latter case the shape of the core and the satellites
compares well with that of the original. Also the positions of maximum amplitude
in the satellites coincide. The amplitudes differ by roughly 10%. For ω0 + ω2 the
main features of the tripole are also clearly seen in figure 9(e), but there are obvious
differences between the core shapes. The higher azimuthal harmonics only contribute
to the details at this point. Note for example the small ring-like feature at a large
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(g) (h) (i)

(d ) (e) ( f )

(a) (b) (c)

Figure 7. Contour plots of vorticity and separate components for the three compound vortices. The
first row shows (a) the tripole of figure 2f at t = 200, (b) the triangular vortex of figure 3d at t = 200
and (c) the square vortex of figure 4 at t = 130 (indicated by a black square in figure 5c). The second
row shows contours of ωm for (d) the tripole (m = 2), (e) the triangular vortex (m = 3) and (f) the
square vortex (m = 4). Contour increments in the first and second row are ∆ω = max(|ω(m)|)/10.
The third row shows contours of ω2m at the same levels as in the second row. Box sizes are the
same as in figure 6.
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Figure 8. (a) ω̄α=3 and the ω0-component (dashed line) of the tripole at t = 200, (b) ωα=7 and the
ω0-component (dashed line) of the triangular vortex at t = 200, (c) ωα=7 and the ω0-component
(dashed line) of the square vortex at t = 130.
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(a) (b)

(c) (d )

(e) ( f )

Figure 9. The field of figure 2c (tripole at t = 50) approximated by (a) ω ≈ ω0 +ω2, (b) ω0 +ω2 +ω4,
(c) ω0 + ω2 + ω4 + ω6 and (d) ω0 + ω2 + ω4 + ω6 + ω8. The field of figure 2(f) (tripole at t = 200)
is approximated in (e) by ω ≈ ω0 + ω2 and (f) ω0 + ω2 + ω4. Uniform grey away from the central
region indicates zero vorticity, black and darker grey indicate negative vorticity, white and lighter
grey indicate positive vorticity.

radius in figure 9(e, f). It is due to the vorticity filaments seen in figure 2(f). Many
higher harmonics need to be added to reconstruct such small-scale features. Similarly,
for the triangular and square vortex we found that ω0 + ωm, with m = 3 and m = 4,
respectively, captures their main features while at intermediate times when the Ak 6=0

peak (see figure 5b, c) the higher harmonics ω3m, ω4m etc. are needed to reconstruct
the small-scale filaments which are then present.

3. Low-dimensional dynamical system
Since only a small number of components ωk dominate during the unfolding of the

instabilities, we investigate whether the same is true dynamically. That is, we question
whether the instabilities and saturation can be described using a small number of
azimuthal wavenumbers. The starting point is the two-dimensional inviscid vorticity
equation in polar coordinates (Batchelor 1967)

∂ω

∂t
+

1

r

∂ψ

∂θ

∂ω

∂r
− 1

r

∂ψ

∂r

∂ω

∂θ
= 0. (8)

In this we substitute expansions of the form

ψ(r, θ; t) =

∞∑
n=0

+∞∑
k=−∞

akn(t)ϕ
k
n(r, θ), ω(r, θ; t) =

∞∑
n=0

+∞∑
k=−∞

bkn(t)ϕ
k
n(r, θ), (9)

where the ϕkn are complex and orthonormal:
∫ ∞

0

∫ +π

−π ϕ
k
n(ϕ

k′
n′)

?dθrdr = δnn′δkk′ (a ?
denotes complex conjugate). Then formally

{akn, bkn} = 〈{ψ,ω}, ϕkn〉, 〈f, g〉 ≡
∫ +∞

0

∫ +π

−π
fg?dθrdr. (10)
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Through projection (Galerkin method) of (8) on the ϕmr and elimination of the akn
through use of the relation ω = −∇2ψ, a system of coupled ODEs can be derived for
the evolution of the vorticity expansion coefficients (see Appendix A):

dbmr
dt

+ i
∑
p=0

∑
q=0

∑
k+l=m

I

(
m k l
r p q

)
bkp b

l
q = 0. (11)

The orthonormal functions are

ϕkn(r, θ) = ckn × ( 1
2r

2)|k|/2e−r
2/4L

|k|
|k|+n( 1

2r
2)eikθ, ckn =

(
n!/2π(|k|+ n)!3

)1/2
. (12)

The Lmn (with n > m) are associated Laguerre polynomials of order n− m, defined as
the mth derivative of the ordinary Laguerre polynomial:

Lmn (x) ≡ dm

dxm
Ln(x), Ln(x) ≡ ex

dn

dxn
xne−x.

If
∫ ∫

R2 ψ2dθrdr < ∞,
∫ ∫

R2 ω
2dθrdr < ∞, then the expansions (9) are possible, i.e.

the set {ϕkn} is complete on R2 in a square-integrable sense (see Higgins 1977). Details

about the calculation of the interaction matrix I
(

m k l
r p q

)
and some of its properties

are given in Appendix A. The condition m = k+ l in (11) says that components with
azimuthal wavenumber m are generated through the nonlinear interaction between
wavenumber k and l components. At infinite resolution all k, l, m ∈ (−∞,+∞) and
p, q, r ∈ [0,+∞) are considered in (11). By truncation at finite limits we obtain a
finite-dimensional dynamical system.

When k = 0 the ϕkn have no azimuthal dependence. In figure 10(a) the first three
of these circular modes ϕ0

n are shown (n = 0, 1, 2). The first (n = 0) is proportional
to exp (−r2/4), the second (n = 1) to (1 − r2/2) exp (−r2/4). As n further increases
the Laguerre polynomials in (12) make the ϕkn more oscillatory. In figure 10(b–e) the
real part of ϕ1

n and ϕ2
n is shown for radial wavenumbers n = 0, 1. The real part of ϕ1

0

shown in figure 10(b) is proportional to r exp (−r2/4) cos θ. This changes sign once
as θ runs from 0 to 2π. This gives a ‘dipole’-like pattern. The graph in figure 10(c) has
more ‘cells’ because ϕ1

1 contains the factor r(r2 − 4) exp (−r2/4) cos θ, which changes
sign not only with increasing θ but also with r. Similar remarks apply to the functions

with higher azimuthal wavenumbers. In expansions like (9) we get terms bknϕ
k
n+b−kn ϕkn

?

when k 6= 0. Since ω is real we have b−kn = bkn
?
. The graphs in figure 10 showing

Re(ϕkn) can thus be viewed as vorticity distributions with two non-zero expansion
coefficients bkn = b−kn = 1/2, whereas complex bkn = |bkn|e−ikφ rotates the patterns over
an angle φ. The b0

n are always real. The ϕkn decay rapidly with increasing r and they
are well-suited to represent compact vorticity distributions. To illustrate this we show
in figure 11 that with a few ϕkn patterns can be formed that resemble the compound
vortices discussed in § 2. In each case we used only ϕ0

0, ϕ
0
1 plus ϕm0 (m = 2 for tripole

pattern, m = 3 for triangular pattern, m = 4 for square pattern) with appropriate
amplitudes (see caption).

In the simulations to be discussed below we integrated (11) forward in time with a
fifth-order Runge–Kutta driver with adaptive stepsize control (see Press et al. 1989),
after assigning initial values to the various expansion coefficients bkp. In the truncated

model we limit the azimuthal wavenumbers to a finite range so that only ϕkn with
k ∈ [−kmax,+kmax] are used. For each k in this range we also truncate at finite
radial wavenumbers Nk , i.e. only ϕkn with n 6 Nk are used. The truncations are
symmetric, i.e. for each k used, −k is also used and N−k = Nk . The calculation of
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Figure 10. (a) The first three circular modes ϕ0
n (n = 0, 1, 2), given by (12), as a function of r

(distance from origin) and shaded contour plots of the real part of (b) ϕ1
0, (c) ϕ1

1, (d) ϕ2
0 and (e) ϕ2

1.
Box size is 15× 15. The origin of the coordinate system is at the centre of the boxes. Shading is as
before.

(a) (b) (c)

Figure 11. (a) A tripole, (b) a triangular vortex and (c) a square vortex created with a sum of a few
ϕkn. In each case we took in (9) b0

0 = −1, b0
1 = −1 and (a) b2

0 = 0.4, (b) b3
0 = −0.2 and (c) b4

0 = −0.2
plus b−kn = (bkn)

? when k 6= 0.

the interaction coefficients is complicated and computationally costly because the ϕkn
are not eigenfunctions of the Laplace operator (see Appendix A). For this reason
we calculated the coefficients only for radial truncations Nk < 10 and a small set of
azimuthal wavenumbers.
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3.1. Linear stability

Next we need to consider what minimal truncations are needed so that the main
features of the evolution of instabilities are well modelled. One criterion is that
normal modes instability should occur. We will see that this is possible with a
relatively small number of the expansion functions. To investigate the linear stability
of circular vortices with the truncated model, ω̄(r) needs to be expressed in terms of
the circular modes ϕ0

n. We can approximate the vorticity distribution of a vortex by
a truncated sum in our expansion functions. In the definition (12) we have written
these functions in terms of a non-dimensional radial variable r. By scaling this
variable, we can attempt to improve the degree to which any truncated series of the
expansion functions will fit the initial vorticity profile. Thus we approximate the initial
distribution by

ω̄(r) ≈ ω̄N0
(r; ε) ≡

N0∑
n=0

b̄0
nϕ

0
n(r/ε, θ), b̄0

n = 〈ω̄, ϕ0
n(r/ε, θ)〉, (13)

where the scaling factor ε is chosen such that for a given radial truncation N0

d(ω̄, ω̄N0
) ≡

∫ ∞
0

(ω̄(r)− ω̄N0
(r; ε))2dr (14)

is minimal. For example, consider the α = 2 vortex with vorticity (see (3))

ω̄(r) = (r2 − 1)e−r
2

= −(π/2)1/2
{
ϕ0

0(2r, θ) + ϕ0
1(2r, θ)

}
.

An absolute minimum d(ω̄, ω̄N0
) = 0 (a perfect fit) is found at ε = 1/2 for any

truncation N0 > 1. In this case b̄0
0 = b̄0

1 = −(π/2)1/2 while all other b̄0
n with n > 1 are

zero. For all other α-values in (3) there is no exact fit with a finite sum of scaled the
ϕ0
n. But, as will be shown, close approximations can be found by minimizing d(ω̄, ω̄N0

)
for sufficiently large N0.

Perturbations with a given azimuthal wavenumber k are of the form

ω′Nk
(r, θ; t) =

Nk∑
p=0

bkp(t)ϕ
k
p(r/ε, θ) + c.c., (15)

with ε in (15) equal to the one minimizing d(ω̄, ω̄N0
). The resolution Nk need not be

equal to N0. In the truncated model the initial condition is ω̄N0
+ω′Nk

. Substitution in
(11) and discarding terms quadratic in the perturbation expansion coefficients leads
to the linearized dynamics

dbkp(t)

dt
= i

Nk∑
p′=0

Mk
pp′b

k
p′(t) Mk

pq = −2

N0∑
r=0

I

(
k 0 k
p r q

)
b̄0
r , (p, q = 0, . . . , Nk). (16)

The coefficients b̄0
r are constants, determined by the optimal approximation ω̄N0

. The

factor 2 appears because we used the symmetry property I
(

m k l
r p q

)
= I
(

m l k
r q p

)
(see Appendix A). We write (16) as ḃk = iMkbk (a dot indicates time derivative), where
Mk is the (Nk + 1) × (Nk + 1) real matrix defined above and bk(t) is the 2(Nk + 1)-
dimensional vector bk(t) = (bk0(t), . . . , b

k
Nk

(t))T. The complex expansion coefficients bkp
(for k > 0) count for two because the real and imaginary part are independent.
Assuming exponential time-dependence bk(t) = eiλtbk , one gets the matrix eigenvalue
problem Mkbk = λbk . Denoting the eigenvalues by λn (n = 0, . . . , Nk) we find that, as
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in §2, an eigenvector bk(n) grows exponentially in the linearized dynamics if Im(λn) < 0.
The evolution of the vorticity perturbation associated with a normal mode is

ω′(r, θ; t) = ei(kθ+λnt)

Nk∑
p=0

bkp(n)
fkp(r/ε) + c.c., (17)

where the bkp(n)
are the components of bk(n) and fkp is ϕkp as in (12) without the factor

eikθ . Thus, a normal mode with Re (λn) 6= 0 rotates and grows in amplitude when
Im(λn) < 0.

For the case of tripole formation, we use the initial profile given by α = 3 as in the
simulation of figure 2. For a given truncation level N0 for the k = 0 modes, we must
first determine the best radial scaling ε. The first row in figure 12 shows d(ω̄, ω̄N0

) as a
function of ε for truncations N0 = 2, 4 when ω̄ is the α = 3 vortex. This is the vortex
which when perturbed gives rise to tripole formation (figure 2). The ε-value at which
an absolute minimum is reached is indicated by a dot in each case. In the second row
we compare ω̄N0

corresponding to these minima with ω̄α=3. For N0 = 2 small devia-
tions are seen in figure 12(c). At truncation N0 = 4, ω̄N0

is indistinguishable from ω̄α=3

(figure 12d). The optimal approximations to ω̄α=3 were subjected to a stability analysis
as outlined above. It is supposed to be unstable to k = 2 perturbations (see figure 1b).
For both resolutions N0 we determined the most unstable k = 2 normal modes with
3 6 N2 6 9. The results are shown in the third row of figure 12. The dashed line indi-
cates the value of 7.67×10−2 from figure 1(b), which was calculated at high resolution.

Figure 12(e) shows that for each N2 the growth rate is systematically too low when
ω̄α=3 is resolved with N0 = 2. With the almost perfect match found with N0 = 4
(figure 12d) we see in figure 12(f) that deviations are at most 5% for 6 6 N2 6 9.
Figure 12(f) has clear signs of convergence with increasing N2. At the intermediate
resolution N0 = 3 (not shown) the optimal approximation differed somewhat less
from ω̄α=3 than for N0 = 2, while the growth rates were scattered about the true value
with deviations as large as 30%. The most unstable normal modes for N2 = 3, 5, 7, 9
are depicted in figure 13. The structure extracted from high-resolution numerical cal-
culations was shown in figure 6(a). In figure 13(a, b) the normal modes with N2 = 3, 5,
respectively, compare poorly with figure 6(a). Their corresponding growth rates devi-
ate 11% and 8.5%, respectively. ForN2 = 7, 9 we see in figure 13(c, d) the characteristic
‘tear’-shape of the inner cells also seen in figure 6(a). The growth rates for the latter
two deviate 5% and 2% from the true value. No unstable modes were found for radial
resolutions N2 < 3. Thus, minimally four ϕkn are needed to resolve unstable modes.

In figure 14 we show results for ω̄α=7. This is the vortex which gives rise to
triangular vortex and square vortex formation (figures 3, 4). Figure 14(a) is a graph
of d(ω̄α=7, ω̄N0

) as a function of ε for N0 = 9. The approximation ω̄N0
for the optimal

ε-value is shown in figure 14(b) together with ω̄α=7. Only slight differences are visible.
Figure 14(c) gives the growth rates of the most unstable k = 4 normal modes with
3 6 N4 6 9. The dashed line indicates the true value of 2.0 × 10−1 from figure 1(b).
For resolutions N4 = 3, 4 no unstable modes are found. Thus, in this case at least six
ϕkn are needed to resolve unstable normal modes. For 5 6 N4 6 9 deviations from the
true growth rate are at most 13% and about 5% for N4 = 8, 9. The most unstable
normal modes with k = 4 corresponding to these last two resolutions (not shown)
compared well with the filtered ω4-component shown in figure 6(c). For N0 < 9 the
optimal approximation to ω̄α=7 was poorer than in figure 14(a) and the growth rates
deviated more than shown in figure 14(c).
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Figure 12. (a) d(ω̄α=3, ω̄N0
) given by (14) for N0 = 2 and (b) for N0 = 4, as a function of ε. Absolute

minima (best fits) are reached for N0 = 2 at ε = 0.344 and for N0 = 4 at ε = 0.280 (black dots).
The second row shows the approximation ω̄N0

(dashed line) corresponding to these minima for (c)
N0 = 2 and (d) N0 = 4 together with ω̄α=3 (solid line). The third row shows the growth rates of the
most unstable k = 2 modes for both approximations with resolutions 3 6 N2 6 9. Squares in panel
(f) mark the resolutions for which the normal modes are shown in figure 13.

3.2. Nonlinear dynamics at low-order truncations

We have established that at low-order truncations the system can exhibit normal
modes growth. Here we determine what dynamically the necessary ingredients are
for instabilities to saturate at finite amplitude, with compound vortex formation as
a result. For this we integrated (11) forward in time using just a few azimuthal
wavenumbers and low radial resolutions. Because according to (12) ϕkp has a polyno-

mial part of order r2p+|k|, a ϕlp has a higher amplitude at a given large r than ϕkp when
|l| > |k|. In order to have the groups of modes with different azimuthal wavenumbers
{k, l} cover approximately the same area, we used truncations Nl < Nk when |l| > |k|.
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(a) (b)

(c) (d )

Figure 13. Contour plots of the most unstable k = 2 normal mode for ω̄α=3 vortex approximated
according to (13) with N0 = 4 and ε = 0.280. Resolutions are (a) N2 = 3, (b) N2 = 5, (c) N2 = 7
and (d) N2 = 9. Thick lines indicate positive values, thin lines negative values.

Further, the experiments and analysis of § 2 suggest that the basic instability and the
saturation at a finite level rely mostly on the presence of the fundamental mode ωm
and its harmonics in addition to the circular mode. The dynamical systems discussed
below used for this reason only wavenumbers k = 0, m, 2m, . . . . Azimuthal truncations
were thus taken at k = m, k = 2m, etc. None of the intermediate wavenumbers were
used; this allows us to focus entirely on the formation process with no consider-
ation of instabilities due to perturbations with azimuthal wavenumbers other than
k = m, 2m, . . . . In such truncated models the following set of equations determines
the dynamics:

db0
r

dt
= −2i

Nm∑
p=0

Nm∑
q=0

feedback︷ ︸︸ ︷
iI

(
0 m −m
r p q

)
Im
(
bmp b

m
q
?
)

(r = 0, . . . , N0)

−2i

N2m∑
p=0

N2m∑
q=0

iI

(
0 2m −2m
r p q

)
Im
(
b2m
p b

2m
q

?
)

︸ ︷︷ ︸
feedback

−2i

N3m∑
p=0

N3m∑
q=0

{· · ·}︸︷︷︸
fdbck

− · · · (18)
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Figure 14. (a) d(ω̄α=7, ω̄N0
) given by (14) as a function of ε for N0 = 9, (b) the approximation ω̄N0

(dashed line) corresponding to the optimal approximation found with ε = 0.192 and ω̄α=7 (solid line)
and (c) the growth rates of the most unstable k = 4 modes for this approximation with resolutions
3 6 N4 6 9.

dbmr
dt

= −2i

N0∑
p=0

Nm∑
q=0

advection︷ ︸︸ ︷
I

(
m 0 m
r p q

)
b0
pb
m
q (r = 0, . . . , Nm)

−2i

Nm∑
p=0

N2m∑
q=0

I

(
m −m 2m
r p q

)
bmp

?b2m
q︸ ︷︷ ︸

feedback

−2i

N2m∑
p=0

N3m∑
q=0

{· · ·}︸︷︷︸
fdbck

− · · · (19)

db2m
r

dt
= −2i

N0∑
p=0

N2m∑
q=0

advection︷ ︸︸ ︷
I

(
2m 0 2m
r p q

)
b0
pb

2m
q (r = 0, . . . , N2m)

−2i

Nm∑
p=0

Nm∑
q=0

I

(
2m m m
r p q

)
bmp b

m
q︸ ︷︷ ︸

first harmonic generation

−2i

N2m∑
p=0

N4m∑
q=0

{· · ·}︸︷︷︸
fdbck

− · · · (20)

and so on. The factors 2 in front of the sums in (19) and (20) are due to the
symmetry property (A 7a) of the interaction matrix (see Appendix A). To get (18) the

anti-symmetry property (A 7b) of the interaction matrix and the fact that b−kp = bkp
?

were combined. The time rate of change of a given mode’s amplitude with azimuthal
wavenumber m′ is determined by nonlinear interactions of modes with wavenumbers
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k, l which satisfy k + l = m′. For these interactions we use the notation k + l → m′.
Circular mode amplitudes b0

r change only due to self-interactions of non-circular
modes, i.e. k + (−k) → 0 with k 6= 0. ‘Feedbacks’ are interactions k + l → m′ where
either |m′| < |k| or |m′| < |l|. Any interaction 0 + k → k, which simply represents
the advection of the wavenumber k component by the circular component, we shall
refer to as ‘advection’. The generation of harmonics occurs when both k, l > 0 or
k, l < 0. We obtain the system truncated at azimuthal wavenumber k = 2m and radial
truncations N0, Nm,N2m if the summations that involve k = 3m, k = 4m, . . . (upper
indices N3m,N4m, . . .) are discarded in (18)–(20). We refer to this as the (0, m, 2m)
system. If also (20) is discarded plus all terms involving k = 2m, 3m, . . . in (18) and
(19), we get the dynamics for the system truncated at k = m and radial truncations
N0, Nm. This we call the (0, m) system. In Appendix B it is shown that the system
conserves enstrophy Q at any truncation, where

Q =
∑
k>0

Qk, Q0 =

N0∑
p=0

|b0
p|2, Qk>0 = 2

Nk∑
p=0

|bkp|2. (21)

Thus, in the (0, m) system, Q0+Qm is constant and in the (0, m, 2m) system, Q0+Qm+Q2m

is constant.

3.2.1. The (0, m) system

The stability analysis in § 3.1 showed that for unstable normal modes a certain
minimum radial resolution Nm is required. For ω̄α=3 unstable modes with k = 2 were
only found for N2 > 3, for ω̄α=7 unstable modes with k = 4 only for N4 > 5 (figures 12
and 14). The simplest system that may mimic for example tripole formation thus uses
only azimuthal wavenumbers k = 0, 2 and must have a radial resolution N2 > 3.
We focus on this case here. We take N2 = 3 and a resolution N0 = 4 which is high
enough to closely approximate ω̄α=3 (see figure 12d). The initial conditions for (11)
are the b0

p determined by the optimal approximation to ω̄α=3 plus a small non-zero

b2
0. This projects on the most unstable mode seen in figure 13(a). Using this as an

initial condition we integrated (11) forward in time with the (0,2) truncation set of
expansion modes. The phase space spanned by the expansion coefficients has in this
case (N0 + 1) + 2(N2 + 1) dimensions, i.e. it is 13-dimensional. In figure 15(a) we
show the ensuing evolution of Ak(t) = (Qk(t))

1/2 (k = 0, 2), with Qk given by (21).
This is the direct analogue of the Ak(t) defined in (7). Initial exponential growth of
A2 occurs; as in the high-resolution experiments (see figure 5a). This is due to the
advection term in (19). Feedback alters the circular components according to (18), and
A0 decreases in amplitude. Since Ak = Qk

1/2, an amplitude increase in one component
is accompanied by a decrease in the other because in the (0, 2) system Q0 + Q2 is
constant. No saturation at finite amplitude occurs; instead both A0 and A2 oscillate
forever. A tripole-like pattern is associated with the maxima in A2 (figure 15b), and a
distorted circular vortex with the minima (figure 15c). Vacillation between these two
patterns continued, no matter how long we integrated the system. Inspection showed
that at the peaks of A2 the ω0-component is significantly different from ω̄α=3 while
the ω2-component has the characteristic shape of a neutrally stable mode, which
is quite different from unstable modes like those shown in figure 13 (see § 3.3). At
the minima we found ω0 very close to ω̄α=3 while the weak ω2-component neither
resembled a neutrally stable mode nor an unstable mode. In systems with higher
radial resolutions N0, N2 the system exhibited the same behaviour. The absence of
saturation is therefore not due to a poor approximation of the unstable normal
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Figure 15. (a) Evolution of A0 and A2, where Ak = Qk
1/2 with Qk given by (21), after integration of

(11) using k = 0, 2 and resolutions N0 = 4, N2 = 3 with as initial condition the b0
p for the optimal

approximation ωN0
of ω̄α=3 given in figure 12(d), plus a small wavenumber-2 perturbation in the

form of a non-zero b2
0 = 10−2, with all other b2

p zero. (b) Contours of the resulting field at t = 65, (c)
the field at t = 366. These moments are indicated by black dots in panel (a). Contour increments
are ∆ω = max(|ω|)/10, thick contours indicate positive values, thin ones negative values. Box size
is 12× 12. Total enstrophy Q = 1.12.
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Figure 16. Schematic diagram of the interactions in minimal systems using (a) wavenumbers
k = 0, m and (b) k = 0, m, 2m. With reference to equations (18)–(20) 1 = advection, 2 = feedback,
3 = higher-harmonic generation.

mode and the corresponding growth rate. No system using only k = 0, m could either
simulate triangular vortex or square vortex formation. Although the phase space
is full of periodic orbits (§ 3.3), many of which represent such rotating compound
vortices, the dynamics lacks something needed to keep or put the phase flow in the
vicinity of such periodic orbits. The dynamics is in these cases a feedback loop as
sketched in figure 16(a). It has advection 0 + m→ m and feedback m+ (−m)→ 0.

3.2.2. The (0, m, 2m) system

Next in increasing complexity are systems using k = 0, m, 2m. For a study of tripole
formation we used the same initial condition as above in the system with radial
resolutions N0 = 4, N2 = 3, N4 = 2. There are now 2(N4 + 1) additional degrees of
freedom and phase space is 19-dimensional. The dynamics is far more complex as is
seen in figure 16(b): there are three inter-connected feedback loops. In figure 17(a)
we show the evolution of A0, A2 and A4. Again initial exponential growth of A2

occurs, and A4, which is initially zero, increases exponentially too. This is due to
the higher-harmonic generation in (20). No quasi-periodic behaviour occurs; instead
there are irregular oscillations in both A2 and A4. As in figure 5(a), A4 remains at
all times smaller than A2. The amplitude variations in A2 are smaller than in the
simpler dynamics. The six panels in figure 17 show the field at various representative
moments. Even at t = 280 when A2 is relatively small the field is clearly tripole-like
with pronounced satellites (figure 17g). The simulation was continued far longer
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Figure 17. (a) Evolution of A0, A2 and A4 after integration of (11) using k = 0, 2, 4 and resolutions
N0 = 4, N2 = 3, N4 = 2 with the same initial condition as for figure 15 and the fields at (b) t = 40,
(c) t = 70, (d) t = 110, (e) t = 150, (f) t = 190 and (g) t = 280. Box sizes, contouring and Q are as
in figure 15.

than shown. The irregular oscillations continued but at all times the tripole pattern
persisted. Between t = 100 and t = 600 the major axis of the core made 7 turns
which is very close to the number of turns the tripole of figure 2 made in that time
span.

To determine when and how the ω4-component affects the dynamics we deleted
it from the dynamics at various moments during the evolution and then continued
the integration with the system using only k = 0, 2. Two examples are shown in
figure 18. In the first case we deleted ω4 from the dynamics at t = 50, in the second
at t = 60. The upper block of panels (a–d) in figure 18 pertains to the first case,
the lower block (e–h) to the second. For both cases we show ω0 + ω2 and ω0 and
ω2 separately as they are at t = 60. The difference between the fields is that in the
second case ω4 has been active in the dynamics for an extra time span of ∆T = 10
(between t = 50 and t = 60). The evolution of A2 starting at t = 50 for the first case
is in figure 18(d) (thick line). For comparison A2 from figure 17(a) in the dynamics
including ω4 is also plotted and A4 until t = 50 (thin lines). The condition at t = 60 is
such that the ensuing oscillations in A2 are of the same magnitude as in figure 15(a).
The field vacillates between the two extremes seen in figure 15(b, c). In figure 18(h)
the evolution of A2 for the second case is shown, starting at t = 60. It now stays
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at levels like in figure 17(a). This was also the case when ω4 was deleted from the
dynamics any time after t = 60. Again A2 from figure 17(a) and A4 until t = 60
(thin lines) have been added for comparison. At all times tripole-like fields were
found, similar to those in figure 17. The tripole-like fields shown in figure 18(a) and
figure 18(e) thus evolve very differently in the dynamics using k = 0, 2 after t = 60:
the one of figure 18(a) returns to almost circular shapes, as in the dynamics that never
used ω4 while the one in figure 18(e) is robust in the dynamics with k = 0, 2. Some
small differences are apparent between their ω0- and ω2-components. The resulting
robust tripole of figure 18(e) has larger satellites with centres farther away from the
centre and is less asymmetric than the one in figure 18(a). Two conclusions are drawn
from this. First, once the tripole in the dynamics with k = 0, 2, 4 has formed, the
ω4-component is no longer needed to keep ω2-amplitudes from dropping to low levels
with an accompanying disappearance of the tripole. There is mainly a balance due
to the feedback loop between ω0 and ωm as sketched in figure 16(a). Secondly, the
saturation in the dynamics with k = 0, 2, 4 at the levels seen in figure 17(a) is due
to the active role of ω4 in the period prior to the moment the A2 and A4 peak for
the first time. It brings about small but important changes in ω0 and ω2 so that
afterwards the tripole persists even when the first harmonic ω4 is deleted from the
dynamics.

Further information concerning the role of ω4 was obtained by considering various
‘mutilations’ of the dynamics. One is shown in figure 19(a) where we cut the feedback
from the first harmonic to the circular components. This system does not conserve
enstrophy. We applied this to the tripole formation process. When running it forward
in time we found essentially the same evolution as in the ‘uncut’ version, i.e. the
amplitudes evolved as in figure 17(a) and only after t = 200 small deviations became
apparent which remained small afterwards. This showed that the feedback 2m +
(−2m) → 0 is not essential. Another version is shown in figure 19(b) where we also
cut the feedback m + (−m) → 0 from the dynamics. In this case the ω0-component
does not change with time, i.e. ω0 = ω̄α=3 at all times. Initial exponential growth
and saturation of A2 and A4 occurred as in figure 17(a) but at higher levels, i.e.
with A4(t) < A0 < A2(t) and later, i.e. around t = 100 instead of around t = 60.
Nothing resembling a tripole corresponds to this. But it revealed another essential
fact. Had there been no feedback from ω4 to ω2, normal modes growth would have
continued indefinitely, i.e. the system would have blown up. The feedback changes
the ω2 component from the unstable normal mode form towards that of a neutrally
stable mode. The feedback from ω2 to ω0 in figure 19(a) has the added effect that ω0

is changed to forms for which the growth rate of the most unstable mode is smaller
and A0 decreases. For example figure 18(g) shows that in the uncut dynamics ω0 has
a lower maximum at t = 60 than initially. Typically such lower amplitudes at the
outer inflection point imply lower growth rates of unstable modes. This seems to be
the reason for amplitudes to level off earlier with A4(t) < A2(t) < A0(t) when feedback
from ω2 to ω0 is kept in the dynamics.

The experiments were repeated at various higher resolutions N2 and N4. It was
found that the minimal model used here is generic and no dramatically different
behaviour resulted from using higher resolutions. Well-defined tripoles formed in all
cases. Similar results at low-order truncations were obtained for triangle and square
vortex formation, i.e. models using just k = 0, m, 2m were sufficient for growth and
saturation at the proper levels. Higher radial resolutions were needed because for
example for square vortex formation when starting with ω̄α=7 unstable normal modes
with k = 4 were only found for N4 > 5 (see § 3.1).
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Figure 18. Graphs illustrating the consequences of deleting the first-harmonic ω4 from the dynamics.
In the upper block of panels: (a) ω = ω0 +ω2 at t = 60 after deleting ω4 at t = 50, (b) ω2 for panel
(a), (c) ω0 for panel (a), and (d) the evolution of A2 (thick line) starting at t = 50 in the system
using k = 0, 2 and truncations N0 = 4, N2 = 3. Initial evolution is until t = 50 as in figure 17. Thin
lines show A2 and A4 until t = 50 from figure 17. In the lower block of panels: (e) ω = ω0 + ω2 at
t = 60 after deleting ω4 at t = 60, (f) ω2 for panel (e), (g) ω0 for panel (e), and (h) the evolution of
A2 (thick line) starting at t = 60. Initial evolution is until t = 60 as in figure 17. Thin lines show A2

and A4 until t = 60 from figure 17.

3.2.3. Viscous dynamics

The truncated systems conserve enstrophy which is not realistic for two reasons.
First, because in reality during the formation process enstrophy cascades to smaller
scales. In the truncated dynamics this transfer stops at the highest radial and azimuthal
wavenumbers used, and what would have gone to the smaller scales stays in the system.
Secondly, in laboratory and high-resolution experiments there is invariably enstrophy
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Figure 19. Schematic diagram of ‘mutilated’ dynamics in the system using k = 0, m, 2m used to
assess the roles of the feedback (a) ω2m + ω−2m → ω0 and (b) ωm + ω−m → ω0. For conclusions
see text. With reference to equations (18)–(20) 1 = advection, 2 = feedback, 3 = higher-harmonic
generation.

loss due to viscous effects. To investigate the effects of enstrophy loss in the dynamical
system we added Laplacian diffusion to the dynamics, that is, the right-hand side of
(8) was put equal to (1/R)∇2ω where R is a Reynolds number. After projection we
obtain the system

dbmr
dt

+ i
∑
p=0

∑
q=0

∑
k+l=m

I

(
m k l
r p q

)
bkpb

l
q =

1

R

i=r+1∑
i=r−1

Lm
irb

m
i , (22)

where the coefficients Lm
ir are given by (A 2) in Appendix A. If the basis had consisted

of eigenfunctions of the Laplace operator, the right-hand side would have had just
one term, proportional to bmr . In our case we see that diffusion of a given ϕmr leads
also to changes in ϕmr−1 and ϕmr+1, i.e. it generates non-zero amplitudes at both a lower
and a higher radial wavenumber. We studied tripole formation in the system using
k = 0, 2, 4 at the same minimal resolutions as before, i.e. N0 = 4, N2 = 3, N4 = 2 and
the same initial perturbation. An example of the evolution for a Reynolds number
R = 1000 is shown in figure 20. The amplitudes in figure 20(a) evolve along the
same lines as in figure 17(a) until shortly after they first peak. However, after that
point the irregular oscillations in the Ak diminish in amplitude while the average
value decreases with time. For higher Reynolds numbers the irregular oscillations
diminish to the same extent later in time and the decay is slower. The next three
panels show the fields at the times indicated by dots in figure 20(a). In contrast to
the fields of figure 17, far more symmetric tripoles are found at each instant. In
figure 21 we compare projections of the phase trajectories in the inviscid and the
viscous dynamics. The projections are on the three-dimensional subspace spanned by
b0

0, Re(b2
0) and Im(b2

0). In the inviscid dynamics (figure 21a) the trajectory is seen to
spiral outwards from the horizontal axis and then to wander around chaotically. With
diffusion the trajectory in figure 21(b) is smooth. The loops correspond to rotation of
the tripole. The inviscid trajectory lies on a surface of constant Q, given by (21). The
projection of this hypersurface fills the interior of the ellipsoid |b0

0|2 +2|b2
0|2 = Q in the

three-dimensional subspace used in figure 21. The trajectory in figure 21(a) is at all
times within this region. The trajectory in figure 21(b) cuts surfaces of progressively
smaller Q(t). Here |b0

0| and |b2
0| eventually decrease monotonically with time due to

the overall enstrophy decay.
We took the fields shown in figure 20 as an initial condition for the inviscid

dynamics (11) and integrated it forward. In each case amplitudes were scaled so
that the total enstrophy Q was the same and equal to the Q-value of the inviscid
experiment of figure 17. The evolution of the Ak in a time span ∆T = 600 is shown
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Figure 20. (a) Evolution of A0, A2 and A4 after integration of (22) with R = 1000 using k = 0, 2, 4,
resolutions N0 = 4, N2 = 3, N4 = 2 and with the same initial condition as for figures 15, 17 and the
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17.
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0) for (a) the inviscid dynamics of figure 17 and (b) the viscous dynamics of
figure 20. Total time is for both ∆T = 600.

in figure 22 with to the left the fields from figure 20 that served as initial conditions.
It is seen that the ones taken at later times from the viscous experiment lead to
smaller amplitude variations with time. In each case the tripole fields of figure 22(a–c)
persisted with progressively smaller shape variations and rotated between roughly six
to eight times in the given time span. The fastest rotation occurred for the tripole of
figure 22(a), the slowest for the one of figure 22(c). Thus, as we take tripoles from the
viscous experiment at later times, we get closer to steadily rotating solutions for the
inviscid dynamics. In fact, the thin lines drawn in figure 22(a–c) are the Ak levels of
a stable, steadily rotating solution shown in figure 22(d). It was found by taking the
field from the viscous simulation at t = 800 as an initial condition for a numerical
search of nearby periodic solutions to (18)–(20), as described in detail in § 3.3. It was
already very nearly steady in the inviscid dynamics, i.e amplitude variations were even
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smaller than in figure 22(c) for the field at t = 400. At t = 800 the amplitudes Ak
decayed virtually in lockstep at equal ratios. Figure 20(a) shows that at t = 600 this is
already quite nearly the case. In concise notation periodic solutions in the (0, m, 2m)
system are written as b0 + bmeimΩt + b2mei2mΩt, where the vectors bk are spanned by
fixed expansion coefficients bkp (p = 0, 1, . . . , Nk). Here Ω is the angular velocity of the
rotating pattern. This can be scaled with an arbitrary amplitude γ and more generally
solutions are then γ

(
b0 + bmeimγΩt + b2mei2mγΩt

)
. Without loss of generality we can put

Q = γ2. What we find is that in the viscous dynamics with increasing time the phase
trajectory gets closer and closer to an orbit determined by fixed b0, bm, b2m, Ω and
an amplitude γ for which Q(t) = γ2. That is, asymptotically the dynamics converges

to a solution (Q(t))1/2(b0 + bmeim(Q(t))1/2Ωt + b2mei2m(Q(t))1/2Ωt). The rate of rotation is at
each instant effectively Ω′ = (Q(t))1/2Ω. With the decay of Q there is an associated
slow-down and with increasing time it takes longer for the orbit in figure 21(b) to
complete a loop. The existence of such solutions to (22) is not obvious a priori, neither
do we know how to predict b0, bm, b2m and Ω. The attraction to a particular tripole
of fixed structure was noted by Orlandi & van Heijst (1992) who ran high-resolution
simulations with Laplacian diffusion and found that besides the overall amplitude
decay at large times the tripole was characterized by a fixed vorticity–streamfunction
relation.

3.3. Periodic orbits

The experiments discussed in § 2 suggest that steadily rotating compound vortices of
the tripole, triangular and square vortex kind exist in the absence of any dissipation.
In infinite-dimensional phase space they correspond to time-periodic orbits for which

db0
p(t)

dt
= 0, bkp(t) = |bkp|eik(Ωt+φkp) (k = m, 2m, 3m, . . .),

bkp = 0 (k 6= m, 2m, 3m, . . .), (23)

where m is the fundamental wavenumber characterizing the compound vortex, Ω the
angular velocity and φkp some as of yet unknown phases. In a truncated model such a

solution must satisfy the equations that follow by putting ḃ0
r = 0, ḃmr = imΩbmr , ḃ

2m
r =

i2mΩb2m
r etc. on the left-hand sides of (18)–(20) (a dot indicates time derivative). We

will show that both the (0, m) and the (0, m, 2m) system have many of such periodic
solutions.

3.3.1. The (0, m) system

The simplest system that may have periodic orbits uses only azimuthal wavenum-
bers k = 0, m. If we substitute ḃmr = imΩbmr on the left-hand side of equation (19), it
reduces to the linear eigenvalue problem studied in § 3.1:

mΩbmr =

Nm∑
q=0

Mm
rqb

m
q , Mm

rq = −
N0∑
p=0

2I

(
m 0 m
r p q

)
b0
p (r, q = 0, . . . , Nm),

i.e. it is of the form Mmbm = λbm when we put λ = mΩ and bm is the 2(Nm + 1)-
dimensional vector on the right-hand side of the postulated form bm(t) = eiλtbm.
Therefore it appears that periodic orbits exist if there are neutrally stable normal
modes, that is, if among the Nm + 1 eigenvalues there are real λn. But, the feedback
to the circular modes has to be zero because it has tacitly been assumed that the
b0
p are constants, i.e. in (18) on the left ḃ0

r = 0. This is true because the eigenvectors
corresponding to real λn are real too. Indicating the components of the eigenvector
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Figure 22. Evolution of A0, A2 and A4 (Ak = Q
1/2
k ) after integration of (11) using k = 0, 2, 4,

resolutions N0 = 4, N2 = 3, N4 = 2 and as initial condition (a) the field from the viscous simulation
at t = 100, (b) the field from the viscous simulation at t = 200, (c) the field from the viscous
simulation at t = 400, each shown in figure 20, after scaling amplitudes such that Q = 1.12 as in the
inviscid simulation of figure 17. Thin horizontal lines indicate the Ak-levels (k = 0, 2, 4) for the field
shown in panel (d) which is a steadily rotating stable solution of (11). For more details see text.

bm(n) by bmp (n)
, solutions to (19) have therefore components

bmp (t) = |bmp (n)
|eim(Ωnt+s

m
p π/m), Ωn = λn/m (p = 0, . . . , Nm), (24)

where smp = 0 if bmp (n)
is positive, and smp = −1 when negative. Since bmp b

m
q
? = ei(smp−smq )π

we have Im
(
bmp b

m
q
?
)

= 0 for any {p, q} and (18) is satisfied. Solutions are written as

b0 + βbm(n)e
imΩnt where b0 = (b0

0, . . . , b
0
N0

)T, bm(n) is as before and β is any constant. Also

γ
(
b0 + βbm(n)e

imγΩnt
)

is a solution for any real constant γ. Each neutrally stable mode
thus generates a two-parameter continuum of periodic orbits.
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3.3.2. The (0, m, 2m) system

There is no obvious recipe for establishing the existence of periodic solutions
when more azimuthal wavenumbers are included. If we take for example a system
with k = 0, m, 2m then feedback to the circular components is zero when both

Im
(
bmp b

m
q
?
)

= 0 and Im
(
b2m
p b

2m
q

?
)

= 0 for all {p, q}. Inspection of (18)–(20) reveals

that necessarily

bmp (t) = |bmp |eim(Ωt+smp π/m), b2m
q (t) = |b2m

q |ei2m(Ωt+s2mq π/2m)

(p = 0, . . . , Nm) (q = 0, . . . , N2m),

with again smp , s
2m
q ∈ {−1, 0}. This guarantees that the b0

r are constant in time, but
the remaining problem is no longer linear. By writing bmr = xmr + iymr (xmr , y

m
r real)

and y0
r = 0, substitution in (18)–(20), setting the left-hand sides equal to ḃ0

r = 0,
ḃmr = imΩbmr , ḃ

2m
r = i2mΩb2m

r , respectively, and separating the equations into real and
imaginary parts, the problem becomes that of solving a set of N coupled nonlinear
equations in N + 1 real variables

Fn(x
0
0, . . . , x

0
N0

; xm0 , y
m
0 , . . . , x

m
Nm
, ymNm

; x2m
0 , y

2m
0 , . . . , x2m

N2m
, y2m
N2m

;Ω) = 0

(n = 1, . . . , N), (25)

where N = (N0 + 1) + 2(Nm + 1) + 2(N2m + 1). The number of variables is N +
1 because Ω is also an unknown. Solutions to (25) were numerically determined
with the commercially available MATLAB optimization toolbox which utilizes an
implementation of a Gauss–Newton method and a Levenberg–Marguardt method.
It requires an initial start value for the variables. We searched for periodic orbits on
a surface of constant entrophy Q = c given by (21). This prevents the search from
converging to the zero solution {bkp = 0, Ω = 0}. Because we have no proof of the
existence of periodic orbits and (25) will only be satisfied to an imposed finite degree
of precision, the solutions were tested for steadiness by time-integration of (11). In one
case we used the tripole of figure 11(a) as an initial guess in a system using k = 0, 2, 4
and truncations N0 = 4, N2 = 3, N4 = 2. It has {b0

0 = −1, b0
1 = −1, b2

0 = 0.4}. This
is not a steadily-rotating solution because according to (20) k = 4 components will
be generated (first harmonic), feedback occurs which alters the circular components
according to (18), and so on. A choice for a start value for Ω was guided by the
following. Simulations integrating (11) forward in time, with the (0,2,4) truncation set
of expansion modes, showed that the pattern of figure 11(a), with the core of negative
relative vorticity, tends to rotate in a clockwise direction. This corresponds to Ω > 0.
Thus a positive value was assigned to Ω. For negative Ω the search converged to a
trivial steady state of circular flow, i.e Ω = 0 and all bkp = 0 for k 6= 0. Given these
start values the tripole shown in figure 23(a) was found to provide a solution to (25).
Contour increments were chosen smaller for positive ω than for negative ω in order to
provide a clearer picture of the shape of the satellites. Using this as an initial condition
we integrated (11) forward in time for the (0,2,4) truncation set of expansion modes.
In figure 23(b) we show the ensuing evolution of Ak(t) = (Qk(t))

1/2 (k = 0, 2, 4) with
Qk given by (21). The Ak and each |bkp| were constant to the fourth significant digit,
so it is not exactly steady but very nearly so. That the solution rotates becomes clear
by plotting it at a later time, as in figure 23(c). In the time-span ∆T = 500 the tripole
has made 147/8 clockwise turns. The rate of rotation was also constant to the fourth
significant digit. Even smaller variations in the amplitudes with time could be obtained
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Figure 23. (a) Contours of a solution to (25) with resolutions N0 = 4, N2 = 3, N4 = 3,
(b) evolution of Ak = Qk

1/2 when integrating (11) forward in time using k = 0, 2, 4 with the
above resolutions and the field of panel (a) as initial condition, (c) contours of the resulting field
at t = 500. (d) the field of panel (a) minus the ω4-component, (e) evolution of Ak using k = 0, 2 in
(11) and the field of panel (d) as initial condition, (e) the result at t = 500. Box size is 12× 12, total
enstrophy Q = 2.32. Thick contours indicate positive values, thin lines negative values. Contour in-
crements in the cores (negative vorticity) are ∆ω = max(|ω|)/10, for the satellites ∆ω = max(|ω|)/25.
For details see text.

by imposing higher degrees of accuracy in the numerical search. In extremely long
time integrations no significant amplitude changes occurred which indicates that we
are close to a periodic solution that is Lyapunov stable to small random perturbations
with wavenumbers k = 0, m, 2m. This was further verified with simulations where we
perturbed the periodic solution and then integrated (11). Significant oscillations in the
Ak(t) occurred when the tripole was appreciably distorted but there were no dramatic
changes in the pattern with time. Moreover, the amplitude of the oscillations could
be controlled by the amplitude of the perturbation.

In figure 23(b) we have A2/A4 ≈ 9/2 and the ω4-component is thus much weaker
than the ω2-component. When deleting the ω4-component (all b4

p = 0) we obtain
figure 23(d). Comparison with figure 23(a) shows that only very slight changes result.
We used this as an initial condition in the truncated model using wavenumbers
k = 0, 2 which was then integrated forward in time (again with N0 = 4, N2 = 3).
Small oscillations in A0, A2 are seen in figure 23(e). After ∆T = 500 the pattern has
made 151/4 clockwise turns (figure 23f). Thus it seems that we are close to a periodic
solution in the dynamics using only k = 0, 2. In view of the theory discussed above
for any (0, m) system, it is concluded that the ω2-component of the steadily rotating
tripole in the (0, 2, 4) system must be close to one of the neutrally stable modes of
the circular flow ω0 generated by the b0

p of the tripole shown in figure 23(a). The
ω2-component is shown in figure 24(b). Figure 24(a) has the tripole of figure 23(a)
again but with equal contour increments. For the ω0-component of the tripole and a
resolution N2 = 3 we found the four neutrally stable normal modes shown in the next



Instability of two-dimensional isolated circular vortices 247
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Figure 24. (a) Same as figure 23(a) with equal contour increments ∆ω = max(|ω|)/10, (b) the
ω2-component with contour increments ∆ω = max(|ω2|)/10, and (c)–(f) contours of the four
neutrally stable normal modes at resolution N2 = 3 for the axisymmetric component ω0 of the field
of panel (a). Eigenvalues are (c) λ = 1.24, (d) 0.570, (e) 0.312 and (f) 0.133. Box sizes are 12× 12.
Thick contours indicate positive values, thin lines negative values. For details see text.

four panels of figure 24. Clearly the mode in figure 24(e) is close to the ω2-component.
The rate of rotation of the tripole of figure 23(a) was Ω ≈ 0.150 radians per time unit
in the system using k = 0, 2, 4. For the mode shown in figure 24(e) the eigenvalue is
λ ≈ 0.312. With (24) this corresponds to Ω = λ/2 ≈ 0.156 radians per time unit.

From this it is inferred that for a compound vortex which rotates at a rate Ω in
the truncated dynamics using k = 0, m, 2m the following holds: if the ω2m-component
is much weaker than the ωm-component, then ωm is close to a neutrally stable mode
with a corresponding eigenvalue λ for which λ/m ≈ Ω. If in systems using more
azimuthal wavenumbers the components ω3m, ω4m etc. are all much weaker too than
ωm, the above will most likely still be true. This was tested on the triangular vortex of
figure 3. Its vorticity contours and that of the ω3,6-components at t = 200 were shown
in figure 7. Figure 5(b) indicates that at this time the triangular vortex is rotating
with little change in shape. An optimal approximation ωN0

to its circular component
ω0 (shown in figure 8b) was as in § 3.1 found by minimizing d(ω0, ω̄N0

) given by (14).
For N0 = 9, ω0 could be approximated as closely as shown in figure 14 for the α = 7
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Figure 25. Nine neutrally stable modes for the ω0-component of the triangular vortex at t = 200
shown in figure 8(b). The eigenvalue problem was solved with a resolution N3 = 8. Eigenvalues are
(a) λ = 1.503, (b) 1.497, (c) 1.423, (d) 1.195, (e) 0.949, (f) 0.650, (g) 0.405, (h) 0.270 and (i) 0.206.
Box sizes are as in figures 6 and 7.

vortex. With the resulting b0
p amplitudes we performed the linear stability analysis

with an azimuthal resolution N3 = 8. No unstable modes were found, and there were
thus 9 neutrally stable modes which are shown in figure 25. Obviously the mode
in figure 25(h) is close to the ω3-component shown in figure 7(e). Similarly, normal
modes analysis showed that the ω4-component of the square vortex in figure 7(f) is
close to one of the neutrally stable modes for the ω0-component of the square vortex.
The ω2-component of the tripole at t = 200 in figure 7(d) did not closely resemble
one of the neutrally stable modes for ω0 at this time. The reason appears to be that
at t = 200 the tripole in the high-resolution experiment is farther from equilibrium
than the other two compound vortices.

By taking different initial conditions in a search for solutions to (25) many different
periodic solutions were found. An interesting example is shown in figure 26(a) in the
system using k = 0, 2, 4 and the same radial truncations as above. It has a slightly
higher peak vorticity in the satellites and a more elongated core than the previous
one of figure 23(a). The difference between the tripoles of figures 23(a) and 26(a) is
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Figure 26. (a) Contours of a solution to (25) with resolutions N0 = 4, N2 = 3, N4 = 3, (b) evolution

of Ak = Q
1/2
k when integrating (11) forward in time using k = 0, 2, 4 with the above resolutions and

the field of panel (a) as initial condition, (c) contours of the resulting field at t = 585. Box sizes,
contouring and Q are as in figure 23.

that in the latter the ω2-component is somewhat stronger with respect to the ω0-
component (measured by A2 and A0) while the ω4-component is weaker as measured
against the ω2-component. The ω2-component of the tripole in figure 26(a) is like the
one shown in figure 24(b). The stability behaviour is quite different though. Around
t = 400 the tripole has made about 12 turns and oscillations appear in the amplitudes
Ak (figure 26b) which rapidly increase. Figure 26(c) shows the field at t = 585.
This is clearly an unstable periodic solution, i.e. the small errors due to the finite
precision of the numerical solution amplify in time. In this case too we deleted the ω4-
component (all b4

p = 0). We used this as an initial condition in the truncated model
using only azimuthal wavenumbers k = 0, 2 as above. Small oscillations in A0, A2

occured as in figure 23(h), but there was no instability in very long time integrations.
Also for various basic flows spanned by different b0 and associated neutrally stable
modes bm(n) we checked the stability of the solutions b0 + βbm(n)e

imΩnt in large ranges of
amplitudes β, and no instability was found. Thus the dynamics with only k = 0, 2 is
too severely truncated to capture instabilities of rotating non-circular vortices. The
model tripoles of figures 23(a) and 26(a) were also used as initial conditions for
searches in an enlarged system with k = 0, 2, 4, 6 and radial truncation N6 = 2. The
resulting solutions to (25) were virtually indistinguishable from the solutions in the
lower-dimensional system. That is, the search converged to a nearby solution with
almost unaltered ω0,2,4 and an additional ω6-component with smaller amplitude than
the ω4-component. The stability behaviour was the same, i.e. the tripole of figure 23(a)
when embedded in the enlarged phase space is stable while the tripole of figure 26(a)
is unstable. Rotation rates changed a mere few percent. Model compound vortices of
the triangular and square type were also easily found. In systems using k = 0, m they
were as predicted by the theory and stable.

4. Summary and discussion
This study of compound vortex formation had two distinct parts. In the first

part (§ 2) we analysed data from high-resolution numerical experiments showing
three different compound vortices emerging from unstable isolated vortices. Tripole
formation is the most robust phenomenon (figure 2), triangular and square vortices
can only be created under carefully controlled circumstances (figures 3, 4). The square
vortex is unstable to infinitesimal perturbations in numerical experiments where the
smallest numerical noise is sufficient to destroy it. The modal analysis of § 2.2 showed
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that all three are the result of similar evolutions. Normal modes growth is followed by
the generation of higher harmonics and the formation is completed when nonlinear
effects halt the growth and amplitudes level off. Amplitudes Ak of the azimuthal
components ωk have the same ordering A0 > Am > A2m > · · · after formation (figure 5)
where for the tripole m = 2, for the triangular vortex m = 3, . . . . The most unstable
normal modes (figure 6) were obtained by extracting the ωm-component from the data
at early times during the evolution. The splitting of the square vortex (m = 4) into
dipoles was identified as due to the growth of an m = 2 component. The main features
of the compound vortices are well-captured by the approximation ω ≈ ω0 +ωm. Prior
to equilibration more azimuthal components are needed to reconstruct the existing
small-scale filaments, which are particularly prominent in the case of the tripole
(figure 9). Our resolution of 2562 resolved these well. In experiments (not shown) with
resolutions 642 and 1282 essentially the same tripole formed, rotating at about the same
rate. Thin vorticity filaments are not resolved with such low resolutions. They are thus
dynamically of little importance and the higher azimuthal components ω3m, ω4m, . . .
therefore appeared to play also dynamically a minor role in the adjustment process.

With this in mind we explored the possibility of reducing the dynamics to as simple
as possible a system, that is, a system employing the smallest possible number of
azimuthal components ωk . In § 3 a dynamical system was derived by projection of the
vorticity equation on the functions (12). These have previously been used by McCalpin
(1987) to analyse data from numerical simulations of azimuthally perturbed vortices.
For practical reasons the interaction coefficients were computed only for small ranges
of azimuthal and radial wavenumbers. In § 3.1 we performed linear stability analysis
within the dynamical system context. For two cases we showed what minimal number
of expansion coefficients need to be kept in the system in order for it to have normal
modes instability. This sets a lowest bound for the truncations. Throughout § 3 we
went as ‘low as one can go’. In § 3.2 we integrated (11) with severe truncations. Our
findings were illustrated through the tripole formation process. The simplest system
which uses only k = 0, m could mimic normal modes growth, but not saturation
with tripole formation as a consequence. Only when also k = 2m was included in
the dynamics did saturation occur. Substantial amplitude variations occurred with
time, but never to the extent that the field lost its clear tripole character (figure 17).
From experiments where the first harmonic ω2m was deleted from the dynamics at
various times it was concluded that it is crucial only during a brief period prior
to the moment of saturation. In this period ω2m albeit small in amplitude brings
about small but important changes in the ω0 and ωm components. After saturation
ω2m is no longer needed in the dynamics, i.e. from then onward the tripole persists
in the system using only k = 0, m (figure 18). It was further established that the
direct feedback ω2m + ω−2m → ω0 is unimportant at all times. The feedback loop
ω2m + ω−m → ωm plus ωm + ωm → ω2m takes the initial unstable normal modes form
of ωm to that of a neutrally stable mode. Feedback ωm + ω−m → ω0 changes ω0 to
forms for which the growth rate of unstable normal modes in the linearized dynamics
become smaller.

Finally we explored the consequences of allowing enstrophy to escape from the
system through the use of Laplacian diffusion. Saturation with far smaller shape
vacillations resulted, as in the high-resolution numerical experiments (figure 20).
Asymptotically the flow converged to a particular tripole with an accompanying
uniform amplitude decay (figure 22). Thus, the main conclusion is that the simplest
dynamics that can capture the formation of the compound vortices is that which
employs azimuthal wavenumbers k = 0, m, 2m. No tendrils like those seen in figure 2(c)
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were resolved by the system; for that higher azimuthal wavenumbers are needed
(with high radial truncations). But, despite the lack of this feature, tripole formation
occurred in the system. The pattern formation process is thus mainly determined by
the large scales in the system. Finally, in § 3.3 we established the existence of time-
periodic solutions in the dynamical system and found that time-periodic solutions in
the (0, m) system correspond to compound vortices for which ωm is a neutrally stable
normal mode for the axisymmetric component ω0. Because typically amplitudes of
the higher harmonics ω2m, ω3m, . . . are much smaller than for ωm we speculated that
for systems employing more azimuthal wavenumbers this would still approximately
hold. This was affirmed by two examples (figures 24 and 25).

The number of degrees of freedom in minimal systems for compound vortex
formation using only k = 0, m, 2m is still quite high. With the truncations N0 = 4,
N2 = 3, N4 = 2 for tripole formation for example, phase space is 19-dimensional.
It may be possible to simplify the dynamics further by switching to projections on
functions that are more closely related to, say, the dominant components of the
compound vortices. That is, we could for example instead of using the ϕmp , use the
normal modes for either the initial axisymmetric vortex or the final axisymmetric
component. By Gram–Schmidt orthogonalization we can then create a new set of
orthonormal functions ϕ′mp , and similarly for the circular modes and the k = 2m
functions. This is of course similar to ‘after the fact’ EOF-analysis, but it may lead to
the discovery of a truly low-dimensional description of the formation process that is
amenable to analysis with the tools of dynamical systems theory. As it is, phase flows
are very complex and hard to understand. The phase space has an infinity of periodic
orbits, some of which are stable, others are unstable (§ 3.3). In the inviscid dynamics
the phase flow wanders chaotically through regions where many nearby periodic
orbits reside, but is never asymptotically attracted to one in particular. There can be
no domains of attraction surrounding any of the periodic orbits. This is because the
inviscid system is time-reversible, i.e. the equations are invariant under sign changes
of vorticity and time. Thus, if there were an attracting orbit which corresponds
to, say, a clockwise rotating tripole, then there is another orbit corresponding to
an anti-clockwise rotating tripole, with the same structure, which is unstable. Two
tripoles with the same structure cannot have different stability properties, and this
proves the absence of asymptotically attracting periodic orbits. With dissipation
added there is an attracting surface, i.e. the flow is not reversible and asymptotically
converges to a surface generated by the closed curve γ

(
b0 + bmeimφ + b2mei2mφ

)
, where

0 6 φ 6 2π/m.
In phase-space the ‘plane’ spanned by all possible vectors b0 represents an infinity

of axisymmetric vortices. The subspace spanned by non-zero vectors bm, b2m can
be viewed as being perpendicular to this plane. For certain b0-values a point that
initially lies slightly off this plane (the initially perturbed vortex) stays close to the
plane (stable vortices) or rapidly moves away (unstable vortices). The cases we have
discussed correspond to initial positions on the b0-plane with nearby trajectories that
lead into a region full of periodic orbits and stay there. There are also points on
the b0-plane such that a small perturbation sets off a phase flow on a trajectory that
does spend some time near periodic orbits, but eventually leaves it for good and non-
periodic flow ensues. The square vortex formation is an example of the latter: first
the flow settles near a periodic orbit (square vortex forms) but then dipole splitting
occurs, i.e. the trajectory leaves the vicinity of the periodic orbit. Carton & Legras
(1994) mention that for α > 3.2 in (3) tripoles form which are unstable and split up
into dipoles. This is another example of such a scenario.
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Some remaining enigmatic questions pertain to the stability of compound vortices,
which in phase space is the question of stability of periodic orbits. In the system
using k = 0, m, 2m we found a stable tripole (figure 23a) and an unstable tripole
(figure 26a). Stability is used in the sense of Lyapunov here, not asymptotic stability.
We just showed that there can be no region surrounding an orbit such that the flow
starting at any point within this region converges to the orbit. As mentioned in § 3.3
shape vacillations of the perturbed tripole of figure 23(a) could be controlled by
the size of the perturbation, but at no time did these oscillations die out with an
accompanying return to the original unperturbed tripole. That is, in phase space the
flow that starts near this orbit stays near it but does not get attracted to it. Also when
time was reversed in (11) the oscillations stayed small but did not tend to zero. In
other words, this orbit is surrounded by a region no trajectories escape from, but they
also do not converge to the orbit. The tripole of figure 26(a) when used as an initial
condition for (11) with time reversed ultimately went through similar dramatic shape
changes as shown in figure 26(c). Certain trajectories can thus come in from far and
stay close to this orbit for a long time but not forever. Other unstable orbits were
found when searching for square vortex solutions to (25). When we added to such
solutions a small k = 2 perturbation in truncated systems using k = 0, 2, 4 they were
in each case unstable, i.e. the ω2-component rapidly amplifies as in the high-resolution
experiment (figure 4). Thus, there are intrinsically unstable orbits, and orbits with a
domain of stability around them. How to discern between them is an open question.
In the inviscid dynamics we have as of yet one known conserved quadratic quantity,
the enstrophy Q. If other invariants are eventually proven to exist, it may be possible
to investigate the stability of periodic orbits with energy methods, that is, to show that
stable orbits are local extrema for some linear combination of conserved quantities
expressed in the expansion coefficients (see Kloosterziel & Carnevale 1992 for such
an approach to the stability question of isolated circular vortices and more recently
Davidson 1998 for stability of forced two-dimensional flows).

This research has been supported by National Science Foundation Grants OCE
91-21998, INT 95-11552 and OCE 97-30843 and Office of Naval Research Grants
N00014-93-1-0459 and N00014-96-1-0762. Resources for the computations were pro-
vided in part by the San Diego Super Computer Center.

Appendix A. Calculation of interaction coefficients
When we project the vorticity equation (8) on ϕmr , and use (9), we obtain

dbmr
dt

+ i
∑
p=0

∑
q=0

∑
k+l=m

J

(
m k l
r p q

)
akpb

l
q = 0,

J

(
m k l
r p q

)
=

〈
lϕlq

∂ϕkp

r∂r
− kϕkp

∂ϕlq

r∂r
, ϕmr

〉
. (A 1)

The streamfunction expansion coefficients akp are next expressed in terms of the

vorticity expansion coefficients bkn using ω = −∇2ψ. The following relation holds:

∇2ϕkn = 1
4
r2ϕkn − (2n+ 1 + |k|)ϕkn.

Thus, the ϕkn are not eigenfunctions of the Laplace operator. For the Laplace operator
we write ∇2ϕkn =

∑
i L

k
inϕ

k
i . The lower indices run from i, n = 0 to i, n = +∞. It is
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found that

Lk
mn = − 1

2
m1/2(m+ |k|)1/2 (n = m− 1)

= − 1
2
(2m+ 1 + |k|) (n = m)

= − 1
2
(m+ 1)1/2(m+ 1 + |k|)1/2 (n = m+ 1)

0 (all other n). (A 2)

Introducing the inverse (Lk
mn)
−1, defined by

∑
p(L

k
ip)
−1Lk

pj = δij , the coefficients akn and

bkn are related according to

bkm = −∑
n

Lk
mna

k
n, akn = −∑

m

(Lk
nm)−1bkm, (A 3)

which is the spectral equivalent of the relation ω = −∇2ψ and its inverse. Using (A 3)
in (A 1) we arrive at (11) with
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(A 4)
With some effort it is found that
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where
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(A 6)

with the constraint m = k+ l. The normalization constants ckp are given by (12). These
integrals have exact solutions in the form of a sum of algebraic expressions (details
are available upon request from the authors). We wrote a computer program which
calculates these algebraic terms, thus providing us with the values of the J in (A 4).
One can only sum over a finite number of terms in (A 4), and the question arises
whether (A 4) converges for a particular combination of indices, assuming we have
the inverse Laplacian to sufficient accuracy. We used large N for the Laplace matrices
(104 or more) to calculate the inverse, and summed until a fractional accuracy of

10−4 was obtained for each coefficient I
(

m k l
r p q

)
. The N were varied as needed

such that the results became insensitive to any further increases in N. To determine a
coefficient we have in general to sum a large number of integrals (A 6) which makes
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the calculation computationally costly. Some properties are:
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(A 7a,b,c)

The symmetry and anti-symmetry properties (A 7a, b) are established by close inspec-

tion of (11), (A 4) and (A 5). It follows that I
(

0 k −k
r p p

)
= 0, i.e. there is no feedback

to the circular components due to nonlinear interactions of a particular mode with

itself. Also I
(

0 0 0
r p q

)
= 0, which expresses that two circular modes do not interact,

i.e. an inviscid circularly symmetric flow is stationary. In Appendix B we show that
(A 7c) follows from enstrophy conservation in the fully resolved inviscid dynamics.

If the ϕkp were eigenfunctions of the Laplace operator, i.e. ∇2ϕkp = −λ2(p, k)ϕkp, then

akp = bkp/λ
2(p, k). The interaction coefficients (A 4) would then have been

I ′
(
m k l
r p q

)
= 1

2J
′
(
m k l
r p q

)
/λ2(p, k) + 1

2J
′
(
m l k
r q p

)
/λ2(q, l),

where the primes indicate the case with Laplacian eigenfunctions for the expansion.
Computationally this is a much simpler case. All previous studies of the barotropic
vorticity equation we are aware of fall into this class (some are cited in Appendix B).

Appendix B. Enstrophy conservation at any truncation
Lorenz (1960) noticed the property of enstrophy conservation at any truncation in

his study of the barotropic vorticity equation on a doubly periodic domain by direct
inspection of the interaction coefficients, for which he had simple exact expressions.
He used expansions in eigenfunctions of the Laplace operator (trigonometric polyno-
mials). Platzman (1960) used the Galerkin method to study the planetary barotropic
vorticity equation with as a basis the eigenfunctions on the sphere (spherical surface
harmonics; Silberman (1954) was the first to do this) and showed the invariance of
enstrophy at any truncation. This result depends on certain anti-symmetry properties
of the interaction coefficients which follow directly from the vorticity equation and
its projection (see also Thompson 1972). Below we closely follow Platzman’s (1960)
analysis which shows that enstrophy will be conserved at any truncation, even when
not using eigenfunctions of the Laplace operator. Next we derive relation (A 7c);
this is based on Kraichnan’s (1958) approach where a triad interaction is considered.
We introduce the following notation. The expansion of vorticity (9) is written as
ω =

∑
γ bγϕγ , where γ = r + im. Thus, bmr ≡ bγ, ϕ

m
r ≡ ϕγ . The complex index γ takes

its values on the lattice of integer coordinates (r, m) on the right-hand side of the
complex plane, including the points on the vertical axis (r = 0). The ϕ are as in (12).
For every γ used in the upper right quadrant, the complex conjugate γ? in the lower
half quadrant is also included (reality condition on ω). In vector notation equation
(8) is

∂ω

∂t
= −u · ∇ω. (B 1)
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As is well-known, enstrophy is conserved:

d

dt

∫ ∫
R2

ω2dxdy =
d

dt

∑
γ

|bγ|2 = 0. (B 2)

This is at infinite resolution, i.e. γ takes all values on the lattice on the right-hand
side of the complex plane. Projecting (B 1) according to (10), and substituting the
ω-expansion we find

dbγ
dt

=
∑
β

bβMγ,β , Mγ,β = −
∫ ∫

R2

ϕ?γ (u · ∇ϕβ)dxdy, (B 3)

where β is a complex index like γ, which takes the same values as γ does. A single
term in (B 2) is

d

dt
|bγ|2 = bγ

db?γ
dt

+ b?γ
dbγ
dt

= bγ
∑
β

b?βM?
γ,β + b?γ

∑
β

bβMγ,β ≡
∑
β

Dγ,β .

By partial integration, using ∇ · u = 0 (incompressibility or u = ∇ ∧ kψ, with ψ a
streamfunction and k a unit vector normal to the plane of flow), and the vanishing
of the ϕ at infinity, it follows from (B 3) that Mγ,β = −M?

β,γ and consequently
Dβ,γ = −Dγ,β . Due to this anti-symmetry

d

dt

∑
γ

|bγ|2 =
∑
γ

∑
β

Dγ,β = 0. (B 4)

But, this is also true when {γ, β} take values only in a finite set of lattice points.
Therefore the truncated dynamics will conserve enstrophy. The non-trivial property
(A 7c) of the interaction coefficients is found as follows. For convenience we rewrite
the dynamics (11) as

dbγ
dt

=
∑
α

∑
β

Iγ,α,βbαbβ, Iγ,α,β ≡ −iI

(
m k l
r p q

)
, (B 5)

with the same notation as above, i.e. α = p+ ik, β = q + il, γ = r + im. For a given γ
at infinite resolution the double sum is over all lattice points α, β with the constraint
k+ l = m. Kraichnan (1958) argued as follows. We know that enstrophy is conserved
at infinite resolution. But, an arbitrary initial condition can be assigned to the vorticity
field. Consider a field represented by a triplet of expansion coefficients {bγ, bα, bβ},
subject to the constraint m = k + l. Then, at t = 0

d

dt

(|bα|2 + |bβ |2 + |bγ|2) = 0. (B 6)

The left-hand side of (B 6) is equal to the sum of the following terms

bγ?
dbγ
dt

+ c.c. = Iγ,α,βbαbβbγ? + Iγ?,α?,β?bα?bβ?bγ,

bα?
dbα
dt

+ c.c. = Iα,γ,β?bγbβ?bα? + Iα?,γ?,βbγ?bβbα,

bβ?
dbβ
dt

+ c.c = Iβ,γ,α?bγbα?bβ? + Iβ?,γ?,αbγ?bαbβ,


(B 7)

where we used b?γ = bγ? . Using (A 7b), we find that (B 6) implies[
Iγ,α,β − Iα,γ,β? − Iβ,γ,α?] (bαbβbγ? − bα?bβ?bγ) = 0. (B 8)
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In general the term in the square brackets must therefore vanish, or

Iγ,α,β = Iα,γ,β? + Iβ,γ,α? , (B 9)

which is relation (A 7c). In some special cases the term (· · ·) in (B 8) vanishes
identically. It vanishes when (i) bγ is real (zero azimuthal wavenumber) and the other
two are each others complex conjugate, or (ii) bα (bβ) is real and bβ (bα) is equal to bγ .
Case (i) is when α = p+im, β = p− im, γ = r+i0, with arbitrary p, r > 0 and arbitrary
m. Case (ii) is when α = p + i0, β = r + im, γ = r + im. In both cases it follows with
(A 7a) and (A 7b) that (A 7c) still holds.

Note Added in Proof

It has come to our attention that G. J. F. van Heijst and M. Beckers (personal
communication) have recently been able to create a square vortex in the laboratory.
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